技術(shù)文章
TECHNICAL ARTICLES隨著電子信息產(chǎn)業(yè)的高速發(fā)展,集成電路的需求出現(xiàn)了井噴式的增長。使得掩膜的需求急劇增加,目前制作掩膜的主要技術(shù)是電子束直寫,但該制作效率非常低下,并且成本也不容小覷,在這種背景下人們把目光轉(zhuǎn)移到了無掩膜光刻技術(shù)。
英國Durham Magneto Optics公司致力于研發(fā)小型臺式無掩膜光刻直寫系統(tǒng)(MicroWriter ML3),為微流控、MEMS、半導體、自旋電子學等研究域提供方便的微加工方案。傳統(tǒng)的光刻工藝中所使用的鉻玻璃掩膜板需要由業(yè)供應(yīng)商提供,但是在研發(fā)過程中,掩膜板的設(shè)計通常需要根據(jù)實際情況多次改變。無掩膜光刻技術(shù)通過以軟件設(shè)計電子掩膜板的方法,克服了這問題。與通過物理掩膜板進行光照的傳統(tǒng)工藝不同,激光直寫是通過電腦控制DMD微鏡矩陣開關(guān),經(jīng)過光學系統(tǒng)調(diào)制,在光刻膠上直接曝光繪出所要的圖案。同時其還具備結(jié)構(gòu)緊湊(70cm X 70cm X 70cm)、高直寫速度,高分辨率(XY:<1 um)的點。采用集成化設(shè)計,全自動控制,可靠性高,操作簡便。
() SMALL: 高性能的具備實際應(yīng)用前景的晶圓MoS2晶體管
原子層的過渡金屬二硫化物(TMD)被認為是下代半導體器件的重要研究熱點。然而,目前大部分的器件都是基于層間剝離來獲取金屬硫化物層,這樣只能實現(xiàn)微米的制備。在本文中,作者提出種用化學氣相沉積(CVD)制備多層MoS2薄層,進而改善所制備器件的相關(guān)性能。采用四探針法測量證明接觸電阻降低個數(shù)量。進步,基于該法制備的連續(xù)大面積MoS2薄層,采用小型無掩膜光刻直寫系統(tǒng)(MicroWriter ML3)構(gòu)筑了頂柵場效應(yīng)晶體管(FET)陣列。研究表明其閾值電壓和場效應(yīng)遷移率均有明顯的提升,平均遷移率可以達到70 cm2V-1s-1,可與層間剝離法制備的MoS2 FET結(jié)果相媲美。本工作創(chuàng)制了種規(guī)?;苽涠STMD功能器件和集成電路應(yīng)用的有效方法。
圖1. (a-e) 用CVD法制備大面積多層MoS2的原理示意及形貌結(jié)果。(g, h, i, j) 單層MoS2邊界及多層MoS2片層島的AFM測試結(jié)果,拉曼譜及光致發(fā)光譜結(jié)果
圖2. 用無掩膜激光直寫系統(tǒng)(MicroWriter)在MoS2薄層上制備的多探針(二探針/四探針)測量系統(tǒng),以及在不同條件下測量的接觸電阻和遷移率結(jié)果。證明所制多層MoS2的平均遷移率可以達到70 cm2V-1s-1
圖3. 用無掩膜光刻直寫系統(tǒng)(MicroWriter)制備的大面積規(guī)模MoS2 FET陣列,及其場效應(yīng)遷移率和閾值電壓的分布性測量結(jié)果,證明該規(guī)模MoS2 FET陣列具備異且穩(wěn)定的均性
(二) Adv. Funct. Mater.: 二維超薄非層狀Cr2S3納米片的氣相沉積制備與拉曼表征
二維磁性材料在自旋磁電子學域展現(xiàn)出巨大的應(yīng)用價值,但是大部分已報道的磁性材料都是具備范德瓦爾斯作用的層狀結(jié)構(gòu),這種結(jié)構(gòu)可以通過簡單的剝離方法獲得。與之相反,非層狀超薄磁性材料制備工藝復雜且非常,其中Cr2S3就是種典型的反鐵磁性非層狀材料。在本文中,作者通過改進化學氣相沉積(CVD)方法,成功制備出超薄的非層狀Cr2S3納米片(厚度薄可達2.5 nm),并深入研究了材料的Raman振動模式及熱導性,同時用無掩膜激光直寫系統(tǒng)(MicroWriter)在材料表面制備電結(jié)構(gòu),測試系列相關(guān)電學性。
圖4. 超薄Cr2S3納米片的制備流程示意圖及其光學形貌和AFM表面形貌
圖5. (a) SiO2/Si基底表面的Cr2S3納米片的AFM表面形貌,(b) 用MicroWriter在Cr2S3納米片上制備測量電,測量材料隨溫度變化的I-V性曲線,(c) 隨溫度變化的電導率測量結(jié)果及擬合曲線比較
(三) Adv. Optical Mater.: 通過對全無機三鹵鈣鈦礦納米晶的調(diào)控,制備出性能良、空氣穩(wěn)定及可調(diào)諧的單分子層MoS2基混合光探測器件
全無機三鹵鈣鈦礦納米晶在過去的數(shù)年間受到廣泛的關(guān)注,基于其異的光物理性和環(huán)境穩(wěn)定性,該種新材料在混合光電器件研究域備受關(guān)注。在本文中,作者制備出種單層MoS2與三鹵鈣鈦礦納米晶結(jié)合的異質(zhì)結(jié)光電器件,通過調(diào)節(jié)鈣鈦礦膠體濃度和表面配體量,進而實現(xiàn)調(diào)控該異質(zhì)結(jié)器件的光電性。在空氣環(huán)境中,該異質(zhì)結(jié)光電器件的光響應(yīng)可達6.4×105 mA/W,同時表現(xiàn)出異的熱穩(wěn)定性和工作穩(wěn)定性。
圖6. CsPbBr3 PNC/monolayer MoS2異質(zhì)結(jié)光電器件的物理結(jié)構(gòu)及工作機理示意
圖7. 不同溶液濃度的鈣鈦礦前驅(qū)體所制備得到的異質(zhì)結(jié)器件的光電性比較
在該異質(zhì)結(jié)的制備過程中,需要在所制備的單層MoS2表面制備Cr/Au電,用小型無掩膜光刻直寫系統(tǒng)(MicroWriter),可以將所設(shè)計的電圖案直接在MoS2層表面進行曝光,避免由與制備圖形掩膜版所帶來的時間及工藝成本,同時用MicroWriter所有的虛擬掩膜對準(Visual Mask Alignment, VMA)功能,可以在實際圖形曝光過程中,準確地找到MoS2目標位置,這樣大大地提高了實驗設(shè)計和實施的靈活性。
圖8. CsPbBr3 PNC/monolayer MoS2異質(zhì)結(jié)光電器件的制備流程,紅色框所示為用無掩膜激光直寫系統(tǒng)(MicroWriter)所制備電結(jié)構(gòu)示意
圖9. (左)用MicroWriter制備的MoS2基器件的I-V性曲線,其中所示單層MoS2形貌及表面電;(右)MicroWriter虛擬掩膜功能(VMA)結(jié)果示意
2019年:
[1] Leonardi F, Zhang Q, Kim Y H, et al. Solution-sheared thin films of a donor-acceptor random copolymer/polystyrene blend as active material in field-effect transistors[J]. Materials Science in Semiconductor Processing, 2019, 93: 105-110.
[2] Mortet V, Drbohlavova L, Lambert N, et al. Conductivity of boron-doped diamond at high electrical field[J]. Diamond and Related Materials, 2019, 98: 107476.
[3] Armistead F J, De Pablo J G, Gadêlha H, et al. Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior[J]. Biophysical journal, 2019, 116(6): 1127-1135.
[4] Salzillo T, Campos A, Mas-Torrent M. Solution-processed thin films of a charge transfer complex for ambipolar field-effect transistors[J]. Journal of Materials Chemistry C, 2019, 7(33): 10257-10263.
[5] Chen H, Liu G, Zhang S, et al. Fundus-simulating phantom for calibration of retinal vessel oximetry devices[J]. Applied optics, 2019, 58(14): 3877-3885.
[6] Zhang S, Xu H, Liao F, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors[J]. Nanotechnology, 2019, 30(17): 174002.
[7] Martin E L, Bryan M T, Pagliara S, et al. Advanced Processing of Micropatterned Elasto-Magnetic Membranes[J]. IEEE Transactions on Magnetics, 2019.
[8] Liu J, Singh A, Llandro J, et al. A low-temperature Kerr effect microscope for the simultaneous magneto-optic and magneto-transport study of magnetic topological insulators[J]. Measurement Science and Technology, 2019.
[9] Ye K, Liu L, Liu Y, et al. Lateral Bilayer MoS2–WS2 Heterostructure Photodetectors with High Responsivity and Detectivity[J]. Advanced Optical Materials, 2019: 1900815.
[10] Gilboa T, Zvuloni E, Zrehen A, et al. Automated, Ultra‐Fast Laser‐Drilling of Nanometer Scale Pores and Nanopore Arrays in Aqueous Solutions[J]. Advanced Functional Materials, 2019: 1900642.
[11] You H, Zhuo Z, Lu X, et al. 1T′-MoTe2-Based On-Chip Electrocatalytic Microdevice: A Platform to Unravel Oxidation-Dependent Electrocatalysis[J]. CCS Chemistry, 2019: 396-406.
[12] Fan X, Wei G, Lin X, et al. Phase-Change Based Interlayer Exchange Coupling Control[J]. arXiv preprint arXiv:1907.10784, 2019.
[13]Zhang Q, Leonardi F, Pfattner R, et al. A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform[J]. Advanced Materials Interfaces, 2019: 1900719.
[14] Yang R, Liu L, Feng S, et al. One-Step Growth of Spatially Graded Mo1-xWxS2 Monolayer with Wide Span in Composition (from x= 0 to 1) at Large Scale[J]. ACS applied materials & interfaces, 2019.
[15] Zhang L, Shen S, Li M, et al. Strategies for Air‐Stable and Tunable Monolayer MoS2‐Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals[J]. Advanced Optical Materials, 2019: 1801744.
[16] Zhou S, Wang R, Han J, et al. Ultrathin Non‐van der Waals Magnetic Rhombohedral Cr2S3: Space‐Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation[J]. Advanced Functional Materials, 2019, 29(3): 1805880.
[17] Chen Y, Casals B, Sanchez F, et al. Solid-State Synapses Modulated by Wavelength-Sensitive Temporal Correlations in Optic Sensory Inputs[J]. ACS Applied Electronic Materials, 2019.
[18] Gu Y, Oliferenko S. Cellular geometry scaling ensures robust division site positioning[J]. Nature communications, 2019, 10(1): 268.
2018年:
[1] Wei G, Lin X, Si Z, et al. Optical control of magnetism in NiFe/VO2 heterostructures[J]. arXiv preprint arXiv:1805.02453, 2018.
[2] Davydova M, Taylor A, Hubík P, et al. Characteristics of zirconium and niobium contacts on boron-doped diamond[J]. Diamond and Related Materials, 2018, 83: 184-189.
[3] Campos A, Riera-Galindo S, Puigdollers J, et al. Reduction of charge traps and stability enhancement in solution-processed organic field-effect transistors based on a blended n-type semiconductor[J]. ACS applied materials & interfaces, 2018, 10(18): 15952-15961.
[4] Jia Z, Hu W, Xiang J, et al. Grain wall boundaries in centimeter-scale continuous monolayer WS2 film grown by chemical vapor deposition[J]. Nanotechnology, 2018, 29(25): 255705.
[5]Tarn M D, Sikora S N F, Porter G C E, et al. The study of atmospheric ice-nucleating particles via microfluidically generated droplets[J]. Microfluidics and nanofluidics, 2018, 22(5): 52.
[6] Jin B, Huang P, Zhang Q, et al. Self‐Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High‐Performance Photodetectors[J]. Advanced Functional Materials, 2018, 28(20): 1800181.
[7] Vallès F, Palau A, Rouco V, et al. Angular flux creep contributions in YBa2Cu3O7−δ nanocomposites from electrical transport measurements[J]. Scientific reports, 2018, 8(1): 5924.
[8] L?pez-Mir L, Frontera C, Aramberri H, et al. Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element[J]. Scientific reports, 2018, 8(1): 861.
[9] Xu H, Zhang H, Guo Z, et al. High‐Performance Wafer‐Scale MoS2 Transistors toward Practical Application[J]. Small, 2018, 14(48): 1803465.
Copyright © 2024QUANTUM量子科學儀器貿(mào)易(北京)有限公司 All Rights Reserved 備案號:京ICP備05075508號-3
技術(shù)支持:化工儀器網(wǎng)
管理登錄 sitemap.xml